Mechanical Fault Diagnosis Method Based on LMD Shannon Entropy and Improved Fuzzy C-means Clustering

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved LMD, Permutation Entropy and Optimized K-Means to Fault Diagnosis for Roller Bearings

Abstract: A novel bearing vibration signal fault feature extraction and recognition method based on the improved local mean decomposition (LMD), permutation entropy (PE) and the optimized K-means clustering algorithm is put forward in this paper. The improved LMD is proposed based on the self-similarity of roller bearing vibration signal extending the right and left side of the original signal ...

متن کامل

An improved fuzzy C-means clustering algorithm based on PSO

To deal with the problem of premature convergence of the fuzzy c-means clustering algorithm based on particle swarm optimization, which is sensitive to noise and less effective when handling the data set that dimensions greater than the number of samples, a novel fuzzy c-means clustering method based on the enhanced Particle Swarm Optimization algorithm is presented. Firstly, this approach dist...

متن کامل

A Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach

In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...

متن کامل

Improved Fuzzy C-means Clustering Algorithm Based on Sample Density

Fuzzy clustering techniques, especially fuzzy c-means (FCM) clustering algorithm, have been widely used in automated image segmentation. The performance of the FCM algorithm depends on the selection of initial cluster center and/or the initial memberships value. if a good initial cluster center that is close to the actual final cluster center can be found. the FCM algorithm will converge very q...

متن کامل

Relative entropy fuzzy c-means clustering

Pattern recognition is a collection of computer techniques to classify various observations into different clusters of similar attributes in either supervised or unsupervised manner. Application of fuzzy logic to unsupervised classification or clustering methods has resulted in many wildly used techniques such as fuzzy c-means (FCM) method. However, when the observations are too noisy, the perf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The International Journal of Acoustics and Vibration

سال: 2017

ISSN: 1027-5851,2415-1408

DOI: 10.20855/ijav.2017.22.2466